Solving Combinatorial Optimization Problems

Combinatorial optimization problem

- A combinatorial optimization problem is a tuple (V, f, c)
- V is a set of discrete variables with finite domains
- An assignment maps each $v \hat{I} V$ to a value in v's domain
- f is a function that decides feasibility of assignments
 - f(a) returns true if and only if assignment a is feasible
- c is a function that returns the cost of an assignment
 - -c(a) is the cost of assignment a
 - assignment a_1 is preferred over assignment a_2 if $c(a_1) < c(a_2)$
- Problem:

$$min\ c(V)\ st\ f(V)$$

MI/MR as combinatorial optimization

• MI

- variables: components with domains the possible modes
 - an assignment corresponds to a candidate diagnosis
- feasibility: consistency with observations
- cost: probability of a candidate diagnosis

MR

- variables: components with domains the possible modes
 - an assignment corresponds to a candidate repair
- feasibility: entailment of goal
- cost: cost of repair

Simple cost model

- Each variable has an associated cost of assigning it a value
 - $c(v_i = l_i)$ is the cost of assigning value l_i to variable v_i
- Cost of a complete assignment is the *sum* of the costs of the individual variable assignments
 - if assignment a is $v_1 = l_1, ..., v_n = l_n$ then $c(a) = \sum_i c(v_i = l_i)$
- Costs of all variable values are non-negative
 - $-c(v_i=l_i) \bullet 0$
- Each variable has a minimum cost value with cost 0
- Generating a least cost assignment is straightforward
 - each variable is assigned a value with cost 0

Using the simple cost model for MI

• Most probable diagnosis with *independent* component failures [de Kleer & Williams 89; de Kleer 91; Williams & Nayak 96]

$$- p(v_1 = l_1, ..., v_n = l_n) = p(v_1 = l_1) \cdot ... \cdot p(v_n = l_n)$$

- let m_i be the most probable mode for component v_i
- $c(v_i = l_i) = -log(p(v_i = l_i) / p(v_i = m_i))$ \Rightarrow all costs are non-negative with $c(v_i = m_i) = 0$ \Rightarrow for any assignments a_1 and a_2 , $c(a_1) \check{S} c(a_2)$ iff $p(a_1) \cdot p(a_2)$
- Infinitesimal probabilities of *independent* failures [de Kleer 93; Pearl 92]

 $\mathbf{k}(v_i = l_i) = n$ means that $p(v_i = l_i)$ is $O(\mathbf{e}^n)$ for infinitesimal \mathbf{e}

$$\mathbf{k}(v_1 = l_1, ..., v_n = l_n) = \mathbf{k}(v_1 = l_1) + ... + \mathbf{k}(v_n = l_n)$$

$$\Rightarrow$$
 let $c(v_i = l_i) = \mathbf{k}(v_i = l_i)$

• note: for each v_i there is an m_i such that $\mathbf{k}(v_i = m_i) = 0$

Limitations of the simple cost model

- *Dependent* faults [Srinivas & Nayak 96]
 - probabilistic dependence between component failures captured using a Bayesian network
 - need to use a special enumeration algorithm

Best first search

• Used in [de Kleer & Williams 89; Dressler & Struss 94; Williams & Nayak 96] **function** *BFS(V, f, c)*Initialize *Agenda* to a least cost assignment

Initialize *Solutions* to the empty set

while Agenda is non-empty do

Let A be one of the least cost assignments in Agenda

Remove A from Agenda

if f(A) is true then Add A to Solutions endif

Add immediate successor assignments of A to Agenda

if enough solutions then return Solutions endif

endwhile

return Solutions

end BFS

Required subroutines for BFS

- Generating a least cost assignment
- Generating the immediate successors of an assignment
 - completeness: every feasible assignment must be the (eventual) successor of the least cost assignment
 - monotonicity: if b is an immediate successor of a, then $c(a) \ \check{S} \ c(b)$
- Deciding that enough solutions have been generated
 - maximum number of solutions
 - minimum difference between cost of best feasible solution and the cost of the best assignment on the *Agenda*
 - minimum difference between costs of the last two assignments
- Agenda management as a priority queue

Representing assignments

• Each assignment is represented by the set of variable values that *differ* from the least cost assignment

$$dom(v_1) = \{a_1, b_1, c_1\}$$
 $c(v_i = a_i) = 0$
 $dom(v_2) = \{a_2, b_2, c_2\}$ $c(v_i = b_i) = 1$
 $dom(v_3) = \{a_3, b_3, c_3\}$ $c(v_i = c_i) = 2$

- Least cost assignment $\{v_1=a_1, v_2=a_2, v_3=a_3\}$
- Assignment $\{v_1=a_1, v_2=a_2, v_3=b_3\}$ represented as just $\{v_3=b_3\}$

Basic successor function

- Assignment A_2 is an *immediate* successor of assignment A_1 if
 - the representation of A_1 is a *subset* of the representation of A_2 ; and
 - the representations of A_1 and A_2 differ by exactly one variable value
 - e.g., $\{v_3=b_3\}$ is an immediate successor of $\{\}$
 - e.g., $\{v_3=b_3, v_2=b_2\}$ is an eventual successor, but not an immediate successor, of $\{\}$
- Definition of immediate successors is
 - complete: all assignments are eventual successors of the least cost assignment

Successor lattice

Conflicts

- A *conflict* is a *partial* assignment that is guaranteed to be infeasible
 - any assignment that *contains* (or is *subsumed* by) a conflict is infeasible
 - [Davis 84; Genesereth 84; de Kleer & Williams 87]
 - e.g., if the partial assignment $\{v_3=a_3, v_2=a_2\}$ is a conflict, then the assignment $\{v_3=a_3, v_2=a_2, v_1=b_1\}$ is infeasible
- Requirement: whenever f determines that an assignment is infeasible, it returns a conflict
 - if assignment A is infeasible, then A itself is trivially a conflict
 - ideally, f should return a minimal infeasible subset of A as a conflict
 - conflicts can be generated using dependency tracking in a truth maintenance system

Focusing with conflicts

• Lemma: Let A_2 be an (eventual) successor of A_1 such that A_1 is subsumed by a conflict N, but A_2 is not. Then there exists an immediate successor A_3 of A_1 that is not subsumed by N such that A_2 is an (eventual) successor of A_3 .

- \Rightarrow If an assignment A_1 is infeasible and is subsumed by a conflict N, then we need only generate those immediate successors of A_1 that are *not* subsumed by N
 - the lemma ensures that completeness is preserved
 - the smaller the conflict, the fewer the immediate successors

Initializing the agenda Untouched On agenda Nayak/Williams AAAI-97 Tutorial SP2 **SP2-65**

Assignment {} is infeasible

Assignment $\{v_1=b_1\}$ is infeasible

Least cost feasible assignment found

Decreasing agenda size

- Agenda size can be problematic in a best first search
 - for a branching factor b, agenda grows to size O(bk) after k checks
 - inserting b elements into the agenda after k checks is $O(b \log b + b \log k)$
- Immediate successors of an assignment are totally ordered
 - non-least cost successors only checked after least cost successor
- ⇒ Insert only least cost successor onto agenda
 Sort remaining successors
 Each assignment has exactly two successors
 - least cost immediate successor
 - next more expensive sibling
- Size of the agenda is *bounded by* the number of checks
 - inserting b successors after k checks is $O(b \log b + 2 \log k)$

Only $\{v_1=b_1\}$ added to agenda

Immediate successor and sibling of $\{v_1=b_1\}$ added to agenda

Least cost feasible assignment found

